Supplemental Information

Extensive Structural Differences of Closely Related 3’ mRNA Isoforms: Links to Pab1 Binding and mRNA Stability

Zarmik Moqtaderi, Joseph V. Geisberg, and Kevin Struhl
Figure S1: Comparison of DREADS and CLIP-READS 3' end isoform frequencies to those obtained with previously published techniques (Related to Figure 1)

(A) Genome browser view of individual loci. (B) Zoomed out view of multi-gene regions. (C) Pearson correlation table of 3' isoform frequencies for DREADS, CLIP-READS, 3'T-Fill (Wilkening et al., 2013), TIF-Seq (Pelechano et al., 2013) and Helicos (Geisberg et al., 2014). Log10 read counts are plotted on both axes for each method as indicated. Plots were produced using the LSD package for R (http://www.treschgroup.de/LSD.html).
Figure S2: DREADS and SHREADS: statistics, reproducibility, and isoform correlations (Related to Figure 2)

(A) DREADS sequencing statistics for biological replicates and combined samples. (B) DMS preferentially reacts with A and C residues of mRNAs. Top: Nucleotide-specific distributions of +DMS and –DMS stops show a substantially greater proportion of A’s than in the –DMS control. Bottom: Nucleotide distributions of +DMS and –DMS stops at positions other than A show that C’s are found more frequently in the +DMS library relative to the –DMS library. (C) Median correlation of DMS reads between biological replicates A and B as a function of isoform expression level. Reads were counted over a 300-nt window upstream of the 3’-most cleavage/poly(A) site. (D) Correlation of net reads between biological replicate A (Rep A) and biological replicate B (Rep B) on a per-gene basis. Each data point represents a single Pol II-transcribed gene (4,451 in total) with a minimum of 100 net reads (summed over all isoforms) in its 3’UTR (+1 to +400 relative to stop codon). (E) Correlation of DREADS to DMS-Seq (Rouskin et al., 2014) dataset. Median read correlation over a 300-nt window upstream of the 3’-most cleavage/poly(A) site. Number of genes in each category: (L to R): 2,504, 1,309, 567, 265, and 118. (F) Distribution of reactivity profile correlations for closely-related (≤3 nt apart; left panel) and longer-spaced (median spacing = 15 nt; right panel) isoform pairs assayed in vivo. Black bars represent correlation of longer vs shorter isoforms within each isoform pair (correlations are over the shared sequence), while gray bars represent the correlation of two biological replicates for each isoform. (G) SHREADS sequencing statistics for biological replicates and combined samples. (H) Isoform expression correlation plots for control (DMSO only) biological replicates, NAI biological replicates, and DREADS vs SHREADS data sets. (I) Correlation of reactivity profiles between DREADS and SHREADS. >1,000 isoforms, >1,000 A+C reads in both conditions. Median correlation is 0.35.
Figure S3: DREADS sequencing statistics and experimental reproducibility of 3' isoforms in *D. hansenii*, *K. lactis*, and transplanted YACs (Related to Figure 4)

(A) DREADS sequencing statistics for both DMS treated and untreated samples. (B) Correlation of 3’ isoform frequencies in biological replicates of *D. hansenii*, *K. lactis*, *S. cerevisiae* YAC hosts, and the transplanted *D. hansenii* and *K. lactis* YACs. The overall number of unique 3’ mRNA isoforms (≥ 10 reads/isoform) ranges from ~20,000 – 60,000 isoforms for *D. hansenii*, *K. lactis*, and *S. cerevisiae* YAC host strains to ~900 – 1,100 isoforms for *D. hansenii* and *K. lactis* YACs. (C) Genome-wide percentile distribution of Pearson correlation coefficients for isoform reactivity profiles in *K. lactis* and *D. hansenii*. Grey bars: correlations for the same isoform’s reactivity profiles in two biological replicates. Black bars: correlation of every isoform’s reactivity profile with every other same-gene isoform’s reactivity profile.
Figure S4: Pab1 binding and evolutionary conservation (Related to Figure 5)

(A) Nucleotides unique to the longer of two paired isoforms exhibit less evolutionary conservation when the two isoforms are structurally similar. All isoform pairs with endpoints spaced ≤ 20nt apart were divided into one of two groups: those with similar folding (left, ∆R < 0.1) and those that are structurally dissimilar (right, ∆R > 0.3). Individual nucleotides within the regions unique to the longer isoforms were classified as either conserved (gray bars; PhastCons > 0.67) or non-conserved (black bars; PhastCons < 0.33). The proportion of nucleotides that is likely to be conserved is considerably greater in structurally dissimilar isoforms (P = 2.2 x 10-14) than in those pairs that share common structure.

(B) Pab1 IP and input sample (CLIP-READS) sequencing statistics. Completely processed reads represent reads that were uniquely aligned and had at least one non-genomically encoded A.

(C) Correlation of biological replicates and inputs for Pab1 CLIP-READS. (D) Correlation of Pab1 binding dataset with (Tuck and Tollervey, 2013) dataset. Plotted values represent all ORFs common to both datasets (3,596) that had non-zero Pab1 reads and whose termination codons were spaced at ≥ 200 nt apart from other genomic features. (E) Distribution of relative isoform-specific Pab1 binding. Expression-corrected Pab1 binding was calculated for each isoform, and the median binding set to 1.
Figure S5: Structural motifs linked to mRNA isoform stability (Related to Figure 6)

(A) Top panel: Predicted unstructured region at -24 to -18 correlates with increased isoform stability. Number of isoforms in groups (L to R) is 2,078, 3,364 and 1,146. Bottom panel: Predicted double-stranded poly(A) region at +8 to +16 correlates with increased isoform stability. Number of isoforms in groups (L to R) is 6,211, 225 and 152. (B) Isoform stability inversely correlates with Pab1 binding. mRNA isoforms containing ≥ 10, ≥100 or ≥ 1000 Pab1 reads (15,240, 5,301 and 685 isoforms, respectively) exhibit significant correlation to isoform turnover. (C) Predicted unstructured region (-24 to -18), double-stranded poly(A) (+8 to +16) and low Pab1 binding correlate with increased isoform stability.