Promoter Elements, Regulatory Elements, and Chromatin Structure of the Yeast his3 Gene

K. STRUHL
Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115

This paper deals with the relationship between the structure and function of a simple eukaryotic gene, the his3 gene of the baker’s yeast Saccharomyces cerevisiae. First, I describe genetic experiments that define elements necessary for his3 expression (promoter elements) as well as elements responsible for regulating the level of expression as a function of the cell’s physiological state (regulatory elements). Second, I discuss the relationship between these genetic elements and the chromatin structure of the his3 gene.

A BRIEF INTRODUCTION TO YEAST MOLECULAR BIOLOGY

Although yeast is a unicellular microorganism, it has most of the molecular characteristics of higher eukaryotic cells. Here it suffices to note that the chromosomal DNA is organized into a discrete chromatin structure, mRNAs are synthesized by RNA polymerase II, and genes transcribed by this polymerase contain the sequence TATA or some close variant just upstream from the site of transcriptional initiation (the TATA box).

The reason for studying yeast genes is that the sophistication of yeast molecular genetics equals that of prokaryotic organisms such as Escherichia coli. In particular, it is possible to isolate essentially any defined gene as cloned DNA, to alter its DNA sequence at will, and to introduce these mutated derivatives back into yeast cells such that there is one copy per cell exactly at the normal chromosomal location (see Fig. 1). In other words, one can obtain a limitless number of yeast strains that differ from the wild type only in that a normal gene has been replaced by a mutated one. Therefore, mutations constructed in vitro can be examined under true in vivo conditions for their effects on gene expression, gene regulation, and chromatin structure.

THE YEAST his3 GENE

The his3 gene (located on chromosome XV) is a simple regulated gene that encodes the structural gene for imidazolesglycerolphosphate (IGP) dehydratase, one of the ten enzymes composing the pathway for histidine biosynthesis (Fink 1964).

his3 is essential for cell growth only under certain defined conditions. Yeast strains that lack the entire his3 gene grow just as well as wild-type strains when histidine is present in the growth medium. However, unlike...
the wild type, His* strains cannot grow when histidine is omitted from the medium; this property provides both a qualitative assay for his3 expression and a powerful genetic selection. Nevertheless, the level of his3 expression is the same regardless of the presence or the absence of histidine in the medium. This basal level (about one mRNA molecule per cell) is sufficient for cells to produce enough histidine such that they grow at wild-type rates even when histidine is omitted from the medium (Struhl and Davis 1981a).

Although his3 expression is not regulated as a function of exogenously added histidine, it is increased in response to amino acid starvation. Under these conditions, the levels of many amino acid biosynthetic genes are coordinately increased (Wolffner et al. 1975). Of relevance here is the fact that his3 mRNA levels increase about fivefold to tenfold (Struhl and Davis 1981a) and IGP dehydratase activity increases threefold (Struhl 1982a); the basis of the apparent discrepancy is not known. Current evidence suggests that his3 expression is regulated solely by this general control mechanism.

Molecular analysis of the his3 gene and its expression began with its isolation as cloned DNA (Struhl et al. 1976; Struhl and Davis 1977). A structural description of the gene region (Struhl and Davis 1980) and its mRNA transcripts (Struhl and Davis 1981a,b) is shown in Figure 2. his3 is located very near five apparently unrelated (i.e., not co-regulated) genes. The gene itself does not contain intervening sequences and there is no evidence for a precursor to the mRNA (Struhl and Davis 1981a). The mRNA contains a nontranslated “leader” 41 nucleotides in length. As expected for a eukaryotic gene, translation begins at the 5′ proximal AUG codon. The his3 DNA sequence contains some notable features (Struhl and Davis 1981b). Among them are a TATA box region located 37–51 bp upstream from the 5′ end of the mRNA (nucleotides 37 to 51), a perfect inverted repeat between positions −26 and −15, and an 8-bp sequence (ATGCCCTCT) that with minor modifications is repeated around nucleotides −95, −135, −175, −215, and −235.

PROMOTER AND REGULATORY ELEMENTS

More than 100 derivatives of the cloned his3 gene have been physically characterized (usually by DNA sequence analysis) and introduced back into yeast cells, as illustrated in Figure 1 (Struhl 1981a,b, 1982a,b; Struhl and Davis 1981b). Every derivative described here has the entire mRNA coding sequences; thus, functional defects caused by any particular mutation must involve DNA sequences outside the structural gene. Before the results are presented, it will be useful to define terms.

Promoter elements are essential for gene expression; thus, promoter mutations eliminate (or severely reduce) his3 expression. Qualitatively, such mutations prevent (or slow) cell growth in the absence of histidine. When histidine is added, these mutations have no effect on cell growth, but IGP dehydratase levels are significantly below the basal level, if detectable.

Regulatory elements are responsible for changing the level of his3 expression in response to amino acid starvation; thus, regulatory mutations cause IGP dehydratase to be produced at the same level under all growth conditions. In the experiments described here, strains harboring mutant genes are always grown in medium containing histidine to ensure that his3 expression is gratuitous for cell growth. Inducing conditions were achieved by starving the cells for tryptophan.

The phenotypes of the mutations fall into clear patterns that lead to a simple and internally consistent picture of his3 promoter and regulatory elements. However, it should be stressed that the conclusions represent the simplest formal description of the data. It is extremely difficult to disprove alternative explanations for the phenotype of any given mutation, and more complex models can be advanced to fit the data. Furthermore, genetic experiments are very useful for drawing inferences concerning molecular mechanisms, but proof of any particular model depends on knowing the biochemical properties of purified proteins and their target DNAs.
STRUCTURE/FUNCTION RELATIONSHIP OF THE YEAST his3 GENE

The Upstream Promoter Element

The first experiments were designed to determine the minimum contiguous DNA sequence necessary for a fully functional his3 promoter (Struhl 1981a). A series of 24 deletion mutations that successively remove DNA sequences adjacent to the 5' end of the mRNA coding region were isolated (Fig. 3A; Table 1). These mutations describe three distinct phenotypic classes, as evidenced by the growth properties they confer in the absence of histidine. Derivatives that retain more than 155 bp upstream from the start of his3 transcription are phenotypically indistinguishable from the wild type; strains containing them grow at the normal rates and express his3 at the usual levels. However, the more extensive deletions representing the other two classes do not show wild-type phenotypes. Those that retain between 60 and 115 upstream base pairs allow cells to grow slowly and have IGP dehydratase levels approximating 5-10% of the normal basal level. Those that contain less than 45 upstream base pairs prevent cell growth in the absence of histidine, and enzyme activity levels are not detectable (less than 3% of the wild-type level).

It is important to remember that deletion mutations cannot be viewed simply as "holes" in DNA but rather as fusions between two previously separated regions. Mapping the his3 promoter by sequential deletion analysis depends on the assumption that the fused sequences (in this case from bacteriophage λ) do not have variable effects on expression. Here, such artifacts are unlikely because sequential deletion into the promoter region decreases expression in a monotonic fashion. Thus, even though each derivative has a unique sequence at the novel joint, and many have completely different fusion sequences, the phenotypes produce a simple and consistent pattern.

Two strong conclusions can be drawn from these results. First, the entire his3 promoter is located within the 155-bp region adjacent to the 5' end of the structural gene. Second, the most-upstream promoter element includes a sequence between positions -113 and -155.

The his3 Promoter Contains at Least Two Elements

The distinction between derivatives that express his3 at reduced levels and those that fail to express the gene (see above) suggests that the promoter may contain two elements. To prove this, it is necessary to show that the
derivatives) are listed. The irs3 endpoints are located with respect to the nor-

ly. Data from Struhl (1981a).

duce wild-type levels of IGP dehydratase and regulate the expression proper-
dicates slow growth; - indicates no growth). All wild-type derivatives pro-
duced wild-type levels of IGP dehydratase and regulate the expression properly. Data from Struhl (1981a).

upstream element is not sufficient for wild-type levels of gene expression. Table 2 lists nine small deletion mutations, each of which retains the intact upstream element but fails to express the gene. Thus, it is possible to delete either of two separate regions of DNA and greatly reduce his3 promoter function. This indicates that the promoter contains at least two elements, both of which are necessary, but neither of which is sufficient individually. This analysis does not eliminate the possibility of additional promoter elements.

The TATA Box Region Can Serve as the Downstream Promoter Element

The smallest deletion mutation that retains the upstream element but eliminates promoter function (deletion 38; see Fig. 3B) indicates that the downstream region includes a sequence 32–80 bp prior to the transcriptional initiation site. The region between positions -37 and -51 includes three sequences that closely resemble TATAAA. These include TATACa (between -51 and -46), TATATA (between -44 and -39), and TATAAA (between -42 and -37). In this section, I show that something within the his3 TATA box region is sufficient to constitute the downstream promoter element.

A matrix of deletion mutations was generated by pairwise joining of upstream and downstream promoter fragments (Struhl 1982b) (see Table 2). The down-

Table 1. Sequential Deletion Analysis

<table>
<thead>
<tr>
<th>his3 fragment</th>
<th>Deletion allele</th>
<th>Endpoint</th>
<th>his3 expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc2773</td>
<td>9</td>
<td>+4 ± 2</td>
<td>-</td>
</tr>
<tr>
<td>Sc2787</td>
<td>10</td>
<td>+4 ± 2</td>
<td>-</td>
</tr>
<tr>
<td>Sc2763</td>
<td>11</td>
<td>+2 ± 2</td>
<td>-</td>
</tr>
<tr>
<td>Sc2694</td>
<td>2</td>
<td>-4 ± 2</td>
<td>-</td>
</tr>
<tr>
<td>Sc2695</td>
<td>3</td>
<td>-4 ± 2</td>
<td>-</td>
</tr>
<tr>
<td>Sc2693</td>
<td>4</td>
<td>-8</td>
<td>-</td>
</tr>
<tr>
<td>Sc2670</td>
<td>5</td>
<td>-8</td>
<td>-</td>
</tr>
<tr>
<td>Sc2779</td>
<td>12</td>
<td>-29</td>
<td>-</td>
</tr>
<tr>
<td>Sc2667</td>
<td>6</td>
<td>-35</td>
<td>-</td>
</tr>
<tr>
<td>Sc2666</td>
<td>7</td>
<td>-39</td>
<td>-</td>
</tr>
<tr>
<td>Sc2669</td>
<td>8</td>
<td>-43</td>
<td>-</td>
</tr>
<tr>
<td>Sc2782</td>
<td>13</td>
<td>-60 ± 2</td>
<td>+/-</td>
</tr>
<tr>
<td>Sc2767</td>
<td>14</td>
<td>-78 ± 2</td>
<td>+/-</td>
</tr>
<tr>
<td>Sc2786</td>
<td>15</td>
<td>-90 ± 2</td>
<td>+/-</td>
</tr>
<tr>
<td>Sc2755</td>
<td>16</td>
<td>-92 ± 2</td>
<td>+/-</td>
</tr>
<tr>
<td>Sc2771</td>
<td>17</td>
<td>-113 ± 3</td>
<td>+/-</td>
</tr>
<tr>
<td>Sc2757</td>
<td></td>
<td>-155 ± 3</td>
<td>+</td>
</tr>
<tr>
<td>Sc2781</td>
<td></td>
<td>-185 ± 5</td>
<td>+</td>
</tr>
<tr>
<td>Sc2776</td>
<td></td>
<td>-205 ± 5</td>
<td>+</td>
</tr>
<tr>
<td>Sc2783</td>
<td></td>
<td>-205 ± 5</td>
<td>+</td>
</tr>
<tr>
<td>Sc2784</td>
<td></td>
<td>-220 ± 5</td>
<td>+</td>
</tr>
<tr>
<td>Sc2765</td>
<td></td>
<td>-250 ± 5</td>
<td>+</td>
</tr>
<tr>
<td>Sc2778</td>
<td></td>
<td>-255 ± 5</td>
<td>+</td>
</tr>
</tbody>
</table>

The cloned fragment numbers and deletion alleles (for non-wild-type derivatives) are listed. The his3 endpoints are located with respect to the normal start of transcription (see Fig. 3); the other deletion endpoints map at various positions in bacteriophage λ. his3 expression is determined by growth in the absence of histidine (+ indicates wild-type growth; +/- indicates slow growth; - indicates no growth). All wild-type derivatives produce wild-type levels of IGP dehydratase and regulate the expression properly. Data from Struhl (1981a).

stream deletion endpoints map at positions -8, -20, -32, -53, and -73, and the upstream deletion endpoints map at positions -32, -80, -106, -112, and -119. The 21 mutations examined produce a simple phenotypic pattern. All 12 derivatives that lack the region between -32 and -52 fail to express the gene, whereas all 9 mutations that retain this region express the gene at some level. Furthermore, deletion 19 (which removes sequences between -31 and -8) and deletion 28 (which removes sequences -106 to -53) express his3 at the wild-type level. Thus, the region between -32 and -52 suffices as the downstream promoter element (see Fig. 3B); henceforth, it will be called the TATA box element.

This localization of the downstream promoter element fits nicely with the results from the sequential deletion analysis (compare A and B in Fig. 3). There, the position was inferred to include a sequence between positions -45 and -60 (the endpoints of the relevant nonexpressing and partially expressing deletions). The combined results therefore indicate that the downstream element includes a sequence between -45 and -52 and it may include sequences as far downstream as -32. It is too early to determine which, if any, of the three TATA boxes is the key sequence.

There is one complication to this simple picture. Deletion mutations that destroy the downstream promoter element are relatively large (the smallest is deletion 38, which lacks nucleotides -32 to -80). Less extensive lesions that remove most or all of the TATA box region do not abolish his3 expression. In fact, deletion
22 (missing nucleotides -31 to -50) expresses his3 at the wild-type level, whereas deletion 25 (missing nucleotides -32 to -58) reduces expression only fivefold. This fivefold decrease is a qualitatively minor effect, since cells grow at wild-type rates in the absence of histidine.

The conclusions from these experiments are as follows. The downstream promoter element is absolutely required for gene expression. The TATA box region suffices as the downstream promoter element, but it is not absolutely required. In the absence of the TATA box region, other sequences (probably located somewhere between positions -59 and -80) can serve as the downstream element.

his3 Regulation Requires at Least Two Distinct Regions

his3 regulatory sites are defined by comparing the DNA sequences of mutations that either regulate or fail to regulate gene expression as a function of amino acid starvation (Struhl 1982a) (Fig. 3C,D; Table 3). Obviously, this can only be performed for derivatives that express the gene at some level (i.e., have some promoter function).

The extent of deletion 24 indicates that a sequence between positions -32 and -41 is implicated in regulation. Deletion of this region can account for the regulatory defects of five other derivatives (deletions 20, 21, 22, 23, and 25). The structures of other mutations suggest a second regulatory element. All derivatives that delete the region between -80 and -100 also fail to regulate the gene properly.

Deletions do not indiscriminately abolish proper regulation. Sequences between -137 and -101, -80 and -53, and -32 and -21 can be removed without altering the ability of cells to induce the usual threefold higher levels of IGP dehydratase activity during amino acid starvation. Some of these derivatives have reduced basal levels of expression (as much as fivefold) (Struhl 1982a).

Thus, there seem to be at least two regulatory elements for his3 expression that are separated by at least 30 bp. The downstream region maps between positions -32 and -52 and includes a sequence between positions -32 and -41. The upstream element maps somewhere between positions -80 and -100.

A comparison of the his3 regulatory sequences with a co-regulated gene (his4) (Donoghue et al. 1982) indicates a striking resemblance. The his3 sequence between positions -44 and -31, TATATAAAGTAGTATG, contains 12 out of 14 residues identical (with a single-base "loop-out") with the his4 sequence TATAAAATAGTATG, which is located 46–60 bp prior to the mRNA start point. For the upstream region, the his3 sequence between positions -97 and -90, ATGACTCTT, shares 7 out of 8 bp with the his4 sequence AGTACTAT located between positions -86 and -79. Furthermore, highly conserved variants of this sequence are found at his3 positions -139 to -132 (ATGCCCTG) and -178 to -171 (ATTACTCT) and his4 positions -137 to -130 (GTGACTCA) and -181 to -174 (GTGACTCC). This striking sequence homology adds support to the view that these regions play an important role in his3 regulation.

Evidence for the Positive Regulation of his3 Expression

Either of two simple models could account for the increased his3 expression during conditions of amino acid starvation. One model posits that the gene interacts with positive regulatory factors that stimulate expression above the basal level. The second model posits that his3 normally interacts with negative regulatory factors that must be removed during conditions of amino acid starvation.

Although genetic experiments can never definitively eliminate either of these models, the present evidence favors positive regulation of his3 expression. By definition, mutations of a positive regulatory site would result in basal levels of expression under all growth conditions. Indeed, five mutations (deletions 20, 22, 23, 24, and 28) confer such a phenotype. Because the other four regulatory mutations result in constitutive expression below the basal level, their phenotypes cannot be assessed in terms of positive or negative control.

Table 3. Analysis of Regulatory Sites

<table>
<thead>
<tr>
<th>his3 fragment</th>
<th>Deletion allele</th>
<th>Endpoints</th>
<th>Basal</th>
<th>Induced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc2857</td>
<td>18</td>
<td>-32–32</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Sc2854</td>
<td>19</td>
<td>-32–21</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Sc3101</td>
<td>20</td>
<td>-43–31</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Sc3102</td>
<td>21</td>
<td>-56–6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sc3110</td>
<td>22</td>
<td>-50–31</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Sc3111</td>
<td>23</td>
<td>-47–24</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Sc3112</td>
<td>24</td>
<td>-41–32</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Sc3113</td>
<td>24</td>
<td>-41–32</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sc3121</td>
<td>26</td>
<td>-80–53</td>
<td>0.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Sc3122</td>
<td>27</td>
<td>-80–73</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Sc3125</td>
<td>28</td>
<td>-106–53</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Sc3126</td>
<td>29</td>
<td>-106–73</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Sc3129</td>
<td>30</td>
<td>-119–53</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Sc3130</td>
<td>37</td>
<td>-119–73</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Sc3138</td>
<td>31</td>
<td>-106–109</td>
<td>1.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Sc3159</td>
<td>32</td>
<td>-106–102</td>
<td>0.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Sc3160</td>
<td>33</td>
<td>-106–100</td>
<td>1.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Sc3161</td>
<td>34</td>
<td>-118–107</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Sc3165</td>
<td>35</td>
<td>-136–101</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Sc2855</td>
<td>36</td>
<td>-32–8</td>
<td>0.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Wild type</td>
<td></td>
<td></td>
<td>1.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

To examine mutations for their ability to regulate his3 expression as a function of amino acid starvation, cells were grown to the middle of exponential phase in minimal medium containing uracil, histidine, tryptophan, and adenine (the requirements for KY137, see Fig. 1), harvested, and washed twice with water. One half of these cells were assayed for IGP dehydratase (Struhl and Davis 1977); those remaining were resuspended in growth medium lacking tryptophan and incubated for an additional 6–9 hr. Under these conditions, the cells undergo an average of one additional cell division before their growth stops as a consequence of tryptophan starvation. After the incubation, cells are harvested as above and assayed. The IGP dehydratase levels under basal and induced conditions are shown. All entries are normalized to the wild-type basal level of expression (defined as 1.0) and are accurate to ±10%. Data from Struhl (1982b).
On the other hand, there is no evidence that supports
the negative-control model. Mutations of a negative-
control site would result in “induced” his3 levels under all
growth conditions; these have yet to be isolated. Such
mutations might be difficult to isolate if the postulated negative-control element maps close to a pro-
moter element. For example, mutations that always ex-
press his3 at the basal level could result from elimina-
tion of a negative-control site and a simultaneous
threefold reduction in the IGP dehydratase basal level.
However, it seems very unlikely that five deletion muta-
tions fortuitously result in the same quantitatively minor
promoter defect, especially considering that nine dele-
tions fortuitously result in the same quantitatively minor
promoter defect, especially considering that nine dele-
tions with full or partially reduced his3 levels under nor-
mal conditions regulate the gene properly.

Evidence That Regulatory Elements Can Be
Separated from Promoter Elements

As described earlier, the distinction between pro-
moter and regulatory elements is conceptual. In physical
terms, they can be inextricably linked, partially overlap-
ping, or totally separate.

The derivatives described above define two regu-
latory regions. At least one alteration of each region ex-
presses his3 at the basal level under all conditions.
Thus, it seems possible to destroy either regulatory site
without inactivating promoter function. Conversely, in
a number of mutations, promoter function is reduced as
much as fivefold while regulatory function is apparently
unaffected. Thus, promoter and regulatory functions
can be separated by mutation.

It is possible to explain this functional separation in
terms of the locations of the promoter and regulatory
elements along the his3 gene (see Fig. 3). Nevertheless,
it should be stressed that the relationship between all of
these genetic elements (particularly those at the TATA
box) remains to be clarified.

PROPERTIES OF his3 PROMOTER ELEMENTS

In the previous sections, I identified two promoter
elements and two regulatory elements. Here, I describe
experiments that further characterize the TATA pro-
moter element and its relationship to the upstream ele-
ment. The results strongly suggest that this eukaryotic
promoter is radically different from prokaryotic counter-
parts.

The TATA Box Element Requires Specific Sequences

Deletion of the TATA promoter element could elimi-
nate gene expression for either of two reasons. The sim-
plest interpretation is that the mutations delete critical
sequences. Another explanation is that they alter im-
portant spacing relationships between other sequences.
These possibilities have been distinguished by analyzing
mutations in which his3 sequences have been replaced
by “foreign” DNA (Struhl 1982b). All of the deletion
mutants listed in Table 2 conveniently have an EcoRI
site at the deletion break points. A 31-bp DNA fragment
(or multiple tandem copies of it) from coliphage M13
was inserted into the “space” of four different deletion
mutants (Fig. 4). Two of the original deletions (38 and
47) lack the TATA promoter element, whereas the
analogous pair (deletions 26 and 28) contain this region.
The phenotypes of the derivatives analyzed in Table 4
give the following clear pattern. All derivatives contain-
ing the M13 fragment in the + orientation express his3.
Of derivatives containing the M13 fragment in the —
orientation, only those with the his3 TATA box region
express the gene. Thus, it seems that the + orientation
can serve as the downstream promoter element, whereas
the — orientation cannot. In this regard it is interesting
to note that the + orientation contains a sequence
resembling the TATA box (TGTAAA) and the — ori-
tention does not. Of more importance, the — orientation
does not qualitatively affect promoter activity when pre-
sent in derivatives containing the his3 TATA box. Thus,
it appears to behave as “neutral” DNA.

Therefore, the absolute requirement for the down-
stream promoter element can be satisfied by the his3
TATA box or by a sequence that resembles it. Derivatives
differing only by the orientation of the M13 fragment have identical spacing relationships but op-
posite phenotypes. Thus, deletions lacking the down-
stream promoter element do not express the gene be-
cause they lack specific sequences.

The Spacing between Promoter Elements
Is Not Critical

In the wild-type his3 gene, the two promoter elements
are located approximately 90 bp apart. In the 13 deriva-

![Figure 4. Replacement of his3 sequences by M13 DNA.](image-url)
ARGS: 0

Table 4. Replacement of his3 Sequences by Ml3 DNA

<table>
<thead>
<tr>
<th>Allele</th>
<th>Endpoints</th>
<th>M13 inserts</th>
<th>Spacing change</th>
<th>his3 expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>-80 -53</td>
<td>0</td>
<td>-20</td>
<td>+</td>
</tr>
<tr>
<td>50</td>
<td>-80 -53</td>
<td>1</td>
<td>+11</td>
<td>+</td>
</tr>
<tr>
<td>51</td>
<td>-80 -53</td>
<td>1</td>
<td>+11</td>
<td>+</td>
</tr>
<tr>
<td>52</td>
<td>-80 -53</td>
<td>2</td>
<td>+42</td>
<td>+</td>
</tr>
<tr>
<td>53</td>
<td>-80 -53</td>
<td>3</td>
<td>+73</td>
<td>+</td>
</tr>
<tr>
<td>54</td>
<td>-80 -53</td>
<td>5</td>
<td>+135</td>
<td>+</td>
</tr>
<tr>
<td>38</td>
<td>-80 -32</td>
<td>0</td>
<td>-41</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>-80 -32</td>
<td>1</td>
<td>-10</td>
<td>+</td>
</tr>
<tr>
<td>36</td>
<td>-80 -32</td>
<td>1</td>
<td>-10</td>
<td>+</td>
</tr>
<tr>
<td>57</td>
<td>-80 -32</td>
<td>2</td>
<td>+21</td>
<td>+</td>
</tr>
<tr>
<td>58</td>
<td>-80 -32</td>
<td>2</td>
<td>+21</td>
<td>+</td>
</tr>
<tr>
<td>59</td>
<td>-80 -32</td>
<td>3</td>
<td>+52</td>
<td>+</td>
</tr>
<tr>
<td>60</td>
<td>-80 -32</td>
<td>3</td>
<td>+52</td>
<td>+</td>
</tr>
<tr>
<td>61</td>
<td>-80 -32</td>
<td>4</td>
<td>+83</td>
<td>+</td>
</tr>
<tr>
<td>28</td>
<td>-106 -53</td>
<td>0</td>
<td>-46</td>
<td>+</td>
</tr>
<tr>
<td>62</td>
<td>-106 -53</td>
<td>1</td>
<td>-15</td>
<td>-</td>
</tr>
<tr>
<td>63</td>
<td>-106 -53</td>
<td>1</td>
<td>-15</td>
<td>+</td>
</tr>
<tr>
<td>64</td>
<td>-106 -53</td>
<td>2</td>
<td>+16</td>
<td>+</td>
</tr>
<tr>
<td>65</td>
<td>-106 -53</td>
<td>3</td>
<td>+47</td>
<td>+</td>
</tr>
<tr>
<td>47</td>
<td>-106 -32</td>
<td>0</td>
<td>-67</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>-106 -32</td>
<td>1</td>
<td>-36</td>
<td>+</td>
</tr>
<tr>
<td>67</td>
<td>-106 -32</td>
<td>1</td>
<td>-36</td>
<td>+</td>
</tr>
<tr>
<td>68</td>
<td>-106 -32</td>
<td>2</td>
<td>-5</td>
<td>+</td>
</tr>
</tbody>
</table>

The principles by which these mutations were constructed are shown in Fig. 4. For each allele, the original endpoints and the number and orientation of M13 fragments are indicated (see text for definition of + and - orientations). The spacing change refers to the number of nucleotides that are added to, or subtracted from, the wild-type gene.

The ability of the upstream promoter element to act at a seemingly long distance is reminiscent of position effects. Previously, I showed that sequences located more than 300 bp from the structural gene can affect gene expression (Struhl 1981b). Specifically, inversion of certain DNA fragments simultaneously altered both his3 and trpl expression, even though the inversion break points are located more than 300 bp from the genes. In these cases, the trpl and his3 derivatives lack the normal upstream promoter element. Thus, these position effects could be explained by the presence or absence of an upstream element located far from the gene.

Upstream Promoter Elements and Long-range Effects on Gene Expression

The ability of the upstream promoter element to act at a seemingly long distance is reminiscent of position effects. Previously, I showed that sequences located more than 300 bp from the structural gene can affect gene expression (Struhl 1981b). Specifically, inversion of certain DNA fragments simultaneously altered both his3 and trpl expression, even though the inversion break points are located more than 300 bp from the genes. In these cases, the trpl and his3 derivatives lack the normal upstream promoter element. Thus, these position effects could be explained by the presence or absence of an upstream element located far from the gene.

Inferences Concerning the Molecular Nature of the his3 Promoter

Our current understanding of promoters derives from studies of prokaryotic genes. Extensive genetic, biochemical, and physical analyses indicate that a prokaryotic promoter is a transcriptionally competent, RNA-polymerase-binding site. First, the two regions defined by genetic means as promoter elements (the -10 and -35 regions) are required for RNA polymerase binding and subsequent transcription in vitro. Second, these regions and the actual site of transcriptional initiation are in close physical contact with the enzyme. Third, mutations that change the spacing between the two promoter elements even by a single base pair can have major effects on promoter function.

Although there is no direct evidence, the following observations lead to the general assumption that eukaryotic RNA polymerase II interacts specifically with the TATA box. First, the TATA box is highly conserved in front of essentially all eukaryotic genes (for review, see Breathnach and Chambon 1981). Second, its DNA sequence is similar to the prokaryotic -10 region, the key determinant of E. coli RNA polymerase binding. Third, it is essential for transcription in crude in vitro systems (Mathis and Chambon 1981; Grosveld et al. 1981). Finally, the distance between the TATA box and the start of transcription is relatively constant (Gluzman et al. 1980; Grosveld et al. 1981).

The properties of the his3 downstream promoter element provide additional support for this view: It is absolutely required for gene expression, it requires orientation-specific DNA sequences, and it can be defined by the his3 TATA box or by a related M13 sequence.

However, in striking contrast to the properties of prokaryotic promoters, the spacing between the his3 promoter elements can be varied with little effect on gene expression. This is important because it is extremely difficult to imagine how any enzyme could interact simultaneously with two DNA regions that have no fixed positional relationship to each other. Thus, the his3 promoter elements probably interact with different proteins (or different conformations of the same protein). If the TATA box is part of a transcriptionally competent RNA-polymerase-binding site (analogous to the prokaryotic -10 region), then it follows that the upstream element is not part of this site.

RELATIONSHIP BETWEEN CHROMATIN STRUCTURE AND GENE EXPRESSION

How could the upstream promoter element act at a relatively far and variable distance? There are two classes of models: One possibility is that the upstream region serves as an entry site for RNA polymerase from which the enzyme moves to its transcriptionally competent binding site (the TATA box?). The other possibility is that proteins interact with the upstream element such that polymerase can bind to the TATA box. One specific example of the latter class is that such proteins create an
electrophoretically separated in 2% agarose, transferred to various amounts of micrococcal nuclease, and DNA was purified, wild-type yeast spheroplasts were incubated at 37°C for 10 min with

Figure 5. Chromatin structure at the his3 locus. (A-D) Nuclei from ble to RNA polymerase. The entry-site model, by definition, predicts that the upstream region is preferentially accessible. The chromatin-domain model implies that the TATA box should be accessible, but only if the upstream promoter region is present. To address this issue, I examined the accessibility of his3 DNA sequences in nuclear chromatin by using micrococcal nuclease as a structural probe (K. Struhl, in prep.).

The TATA Box Region Is Preferentially Cleaved by Micrococcal Nuclease

Micrococcal nuclease preferentially digests DNA located in the spacer regions between nucleosome cores (for review, see Kornberg 1977). Treating yeast nuclei with this enzyme demonstrates that the chromatin structure at the his3 locus is indistinguishable from that of total genomic DNA. The size and shape of hybridization bands shown in Figure 5 (lanes A–D) indicate that the spacing between nucleosome cores averages 160 bp with a deviation of about 5 bp.

Specific sites of cleavage by micrococcal nuclease are mapped relative to a HindIII site within the structural gene located 330 bp from the point of transcriptional initiation (see Fig. 1). From the results presented in Figure 5 (lanes F–J), four (possibly five) preferentially cleaved regions are apparent; these map 210, 370, (530), 700, and 1900 bp from the HindIII marker. The

![Figure 5](image-url)

Figure 5. Chromatin structure at the his3 locus. (A–D) Nuclei from wild-type yeast spheroplasts were incubated at 37°C for 10 min with various amounts of micrococcal nuclease, and DNA was purified, electrophoretically separated in 2% agarose, transferred to nitrocellulose, and challenged for hybridization with 32P-labeled Sc3231 DNA (K. Struhl, in prep.) (see Fig. 2). (F–J) Same procedure as in A–D, except that the purified DNA was cleaved to completion with HindIII prior to electrophoresis. (E) Size standard prepared by cleavage of pBR322 DNA with HaeIII. K–M come from a different gel: Lane K is equivalent to lane J, whereas in lanes L and M, naked DNA from λgt4-Sc2601 was cleaved first with various extents, they delete sequences further upstream. In the five cases in which the upstream element is deleted, nuclease cleavage at the TATA box is reduced significantly (Fig. 6). On the contrary, the derivative that retains the upstream element is indistinguishable from the wild-type gene with respect to chromatin structure at the TATA box. Because the TATA box region is identical in DNA sequence in all these strains, the differences in nuclease cleavage reflect structural dif-

![Figure 6](image-url)

Figure 6. Chromatin structure of promoter mutants. The procedure described in Fig. 5 was used. For each deletion allele tested (listed at the top of the figure), three concentrations of micrococcal nuclease were used. The location of the band indicating cleavage at the TATA box is shown.
ferences. Thus, this experiment eliminates possible artifacts due to inherent specificity of micrococcal nuclease.

The results therefore constitute evidence for a correlation between chromatin structure and gene expression. Specifically, the presence of the upstream promoter element is necessary for nuclease action at the downstream promoter element.

Chromatin Structure Is Not Correlated with Regulation of his3 Expression

As stated in the introduction, his3 expression is increased when yeast cells are starved for amino acids. These conditions, however, do not result in a detectable change in chromatin structure at the TATA box (Fig. 7). Furthermore, when proper his3 regulation is prevented by mutation, normal chromatin structure is observed under conditions of feast and famine. This result was obtained for two his3 regulatory mutations (deletions 22 and 24) as well as for mutations in other genes (aas2 and tra3) that alter general amino acid control (and his3 regulation as a consequence). aas2 prevents his3 induction and tra3 causes induced levels of his3 expression under all conditions (Struhl 1982a).

SOME COMMENTS ON THE RELATIONSHIP BETWEEN GENE STRUCTURE AND FUNCTION

The standard interpretation of the results obtained with micrococcal nuclease is that the his3 TATA box lies preferentially in spacer regions between nucleosome cores. If this interpretation is correct, this enzyme should cleave chromatin at positions displaced from the TATA box by the length of nucleosome units (160 bp; see Fig. 5). Indeed, the site in the structural gene is located the expected distance from the TATA box. When considering cleavage one nucleosome unit upstream from the TATA box (i.e., 530 bp from the HindIII marker), it is difficult to distinguish the desired band from the broad band corresponding to nucleosome trimers (480 bp on average). Nevertheless, in many experiments (Figs. 6 and 7), a band of 530 bp is seen when micrococcal nuclease is present at relatively low concentrations (conditions that produce low amounts of nucleosome trimers).

However, even if this specific interpretation is not correct, preferential micrococcal nuclease cleavage should measure enzyme access to DNA in chromatin. Thus, in the intact cell, it seems likely that the TATA box should be exposed to the action of nuclear proteins, just as it is exposed to enzyme added exogenously to isolated nuclei. Because this region is important for promoter and regulatory functions, such proteins are likely to include RNA polymerase II and possible regulatory factors.

At the beginning of this section, I described "chromatin domain" and "RNA polymerase entry site" models that would explain the unusual and striking features of the upstream promoter element. The observations (1) that micrococcal nuclease cleaves chromatin at the TATA box element but not at the upstream element and (2) that sensitivity at the TATA box depends on the presence of the upstream element are consistent with the naive predictions of the chromatin domain model. A simple picture of this model is that the upstream element is necessary for the "correct" organization of chromatin such that RNA polymerase II can "find" its favored binding site (the TATA box?).

However, it is important to state that the experimentally observed correlation between promoter function and chromatin structure does not establish any particular cause and effect relationship. For example, the correlation may not reflect the presence of an upstream element per se. It is entirely possible that the process of transcription itself (which depends on the upstream element) could alter the chromatin structure. The simplest relationship with transcription seems unlikely because induction of mRNA synthesis during amino acid starvation does not grossly alter the structure. To resolve this issue, it will be important to examine the chromatin structure of more mutants.

The observation that chromatin structure can be correlated with promoter function, but not with gene regulation, seems contrary to the results obtained with other genes. In particular, alterations in structure are associated typically with genes that are undergoing "developmentally regulated" changes in gene expression. However, such genes are controlled by an internal genetic program, whereas his3 expression is responsive only to transient changes in the environmental conditions.

One way to explain these observations is to postulate that the "correct" chromatin structure is a necessary (pre)condition for transcription. Thus, the transcriptional inactivity of zygotes and early embryos may be due to an "incorrect" chromatin structure, and the developmentally regulated expression of genes may in-

Figure 7. Chromatin structure and gene regulation. Each pair of lanes represents micrococcal nuclease treatment of chromatin from normally growing cells ("−" lanes a.e.g.i) and from starved cells ("+" lanes b.d.f.h.j). Cells were starved for histidine by addition to 10 mm aminotriazole, a competitive inhibitor of yeast IGP dehydratase (Klopotowski and Wiater 1965). The strains contained the following alleles: tra3-1 (a,b), aas2-5039 (c,d), wild type (e,f), his3-Δ22 (g,h), and his3-Δ24 (i,j)
volve a change to the “correct” structure in the appropriate cells at the appropriate times. Unlike multicellular embryos, yeast cell division requires transcription, and most yeast genes are transcribed during each cell cycle. For these reasons, it is possible that the vast majority of yeast genes are never in the “inactive” structure. Thus, inactive chromatin structures can be observed only in mutated derivatives of a given gene. According to the definitions used in this paper, chromatin structure would be correlated with promoter function, i.e., expression of the gene. On the other hand, regulation would involve differential interaction of proteins with already “correctly organized” chromatin. Such a regulatory scheme is ideal for rapid changes in transcription as a function of external stimuli. In this light, it is interesting that regulation of yeast mating-type genes is associated with changes in chromatin structure (K. Nasmyth, unpubl.; see Abraham et al., this volume). These genes, unlike his3, do not respond to environmental changes but rather constitute the key determinants of an internal genetic program, the control of cell type.

CONCLUSIONS

This paper provides an initial description of the relationship between the chromatin structure and the promoter/regulatory elements of the yeast his3 gene. The principal conclusions are listed below.

1. The his3 promoter contains at least two distinct elements; these are located 113–155 bp and 32–52 bp from the start of transcription.
2. Regulation of his3 expression depends on two regions (32–41 bp and 80–100 bp from the mRNA start) which have properties consistent with their being sites of positive regulation.
3. The spacing between the his3 promoter elements is apparently unimportant for function, suggesting that the promoter, unlike prokaryotic counterparts, is not a transcriptionally competent RNA-polymerase-binding site.
4. In chromatin, the his3 TATA box is preferentially sensitive to micrococcal nuclease cleavage; this cleavage depends on the presence of the upstream promoter element.

ACKNOWLEDGMENT

This work was supported by grant GM-30186 from the National Institute of General Medical Sciences.

REFERENCES

